
BEE~NSACnONS ON MICROWA~THEORY AND TECHNIQUES, VOL. 44,NO. 12,DECEMBER 1996 2479

Application of the Eigenmode
Transformation Technique for the

Analysis of Planar Transmission Lines
Christian Rieckmann, Andreas Jostingmeier, and A. S. Omar, Senior Member, IEEE

Abstract-The eigenmode transformation technique is formu-
lated for the analysis of inhomogeneously filled shielded waveg-
uides containing metal inserts. The permittivity of the filling
med]um may be an arbitrary function of the transverse coor-
dinates. The method is based on expanding the electromagnetic
field in terms of the eigemnodes of the corresponding empty
shielding waveguide. The metal inserts have first the effect of
linearly transforming the eigenmodes of the empty guide into
those of the shielded waveguide containing the metal iuserts
(including the TEM-modes). Next the inhomogeneity of the filling
med]um is taken into account which leads to a proper matrix
eigenvalue problem. In addition an alternative formulation is
derived from a variational approach. Results of both formulations
are compared for a shielded circular dielectric waveguide. The
eigenmode transformation technique is applied to various types
of planar transmission lines, i.e., coupled microstrip lines, finlines,
and coplanar lines. The results are compared with those of other
methods.

I. INTRODUCTION

w

E consider the inhomogeneously filled waveguide

shown in Fig. 1. The inhomogeneity is given by

a permittivity which may be art arbitrary function of the

transverse coordinates and the waveguide may contain one

or more metal inserts. Such a waveguide represents, e.g.,

shielded coupled microstrip lines, finlines or shielded dielectric

image guides. In tie analysis of microwave components, e.g.,

waveguide discontinuities or junctions, a large number of

eigenrnodes of the corresponding waveguides are needed to

achieve a sufficiently high accuracy. As has been shown ht [1]

it is mandatory that no low order eigenmodes are overlooked.

This is a crucial aspect because in general the waveguides

considered support complex eigenmodes [2]–[4]. Due to the

geometrical similarity of different types of transmission lines

(e.g., there is no essential difference between the dielectric

substrate of a firtline and that of a microstrip line), it would be

desirable to have a modular method at hand. This means that

once the eigenmode coupling corresponding to a dielectric

substrate has been calculated the results can be used for

various line types based on this substrate.
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Fig. 1. Cross section of an inhomogeneously tilled shielded waveguide.

Although the method presented in [5] leads to a proper ma-
trix eigenvalue problem, to the authors’ best knowledge it has
not yet been applied to the actual computation of eigenmodes.
Conventional approaches result in a homogeneous system of
equations given by a characteristic matrix, the elements of
which are functions of the yet unknown propagation constant
[6]. For a nontrivial solution the characteristic matrix becomes
singular. This is not a proper matrix eigenvalue problem.
Each eigenvalue has to be found as a complex zero of the
determinant corresponding to the characteristic matrix. On the

other hand, the solution of a proper eigenvalue problem yields
a large number of eigenvalues (corresponding to the size of
the characteristic matrix) at once.

As has been shown in [7], the set of TE- and TM-
eigenmodes corresponding to an empty waveguide is complete
if no a-priori coupling between the field components of these
eigenmodes is assumed. On the other hand for waveguides
with metal inserts additionally to the TE- and TM-eigenmodes
one or more TEM-eigenmodes (equal to the number of metal
inserts) have to be taken into account to form a complete

set. In this contribution we will follow the analysis of
[5] by expanding the field of the inhomogeneously filled
waveguide in terms of the eigenmodes of the corresponding
empty waveguide. In [8] it has been demonstrated that TM-
and TEM-eigenmodes of a waveguide with metal inserts
can be expressed in terms of the TM-eigenmodes of the
corresponding empty waveguide; whereas the TE-eigenmodes
are linear combinations of TE- and TM-eigenmodes. The
influence of metal inserts can then be described by a linear

transformation of the matrices constituting the eigenvalue
problem corresponding to the shielding waveguide with
dielectric only. This results in a new proper matrix eigenvahte
problem. The computation of the transformation matrices can
be treated as a separate problem [8]–[10] what leads to a
modular character of the method. ~
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II. THEORY

Referring to Fig. 1, the cross section (contour) of the

shielding waveguide and that of the metal insert are denoted

by S (C) and So (Co), respectively. The unit vector normal to
C and C’. is represented by ii. The permittivity G is a function
of the transverse coordinates r. The direction of propagation,
in which the structure is uniform, is taken along the z-axis
with a corresponding propagation constant /?.

Let {M.n } and {S.m } be the complete sets of axial magnetic
and axial electric fields characterizing the TE- and TM-
eigenmodes, respectively, corresponding to the waveguide
according to Fig. 1 without dielectric. Due to the existence of
N isolated metal inserts there exist iV linearly independent po-
tential functions On which describe the corresponding TEM-

modes. Hzn, ~zn, and @n are real functions of the transverse
coordinates which correspond to cut-off wavenumbers K;, K:,
and O, respectively. They satisfy the orthogonality relations

/
+ 6..fizn~zm ~s = (K2) (la)

s–so

/
& & dS=zn zm --L&m

(K:)’
(lb)

s–so

! Vt@. .Vt@m dS = 6n~ (lC)
s–so

where 6~~ is the Kronecker delta and Vt is the transverse

component of the del-operator. Note that I-tzn, &zn, and @n

are defined over S – So only.

A. Eigenmode Transformation Technique

Let k be the unit vector in axial direction. The sets
{Vtlizn x k} and ({ Vt&=n}, {Vt@n]) are complete with
respect to divergence-free and curl-free transverse electric

fields, respectively. The sets ({~ x Vt~zn}, {k x Vt@n })

and {Vt‘HZn} have the same properties with respect to the

magnetic field. Let Et, Ilf, ,?3,, and 1!2 be the transverse

electric, transverse magnetic, axial electric, and axial magnetic
field components, respectively, then we can write

m

n

n n=]

n n

N

n=]

n

(2a)

(2b)

(2C)

(2d)
n

where the z-dependence e ‘~@ has been dropped out for all

field components.

Let {hZm} and {e.n } denote the complete sets of axial
magnetic and axial electric fields belonging to the TE- and

TM-eigenmodes, respectively, corresponding to the empty

shielding waveguide. For ezn and h.n, orthogonality rela-
tions corresponding to (la) and (lb) are valid with cutoff
wavenumbers k; and k$, respectively. Inside a metal insert,
the electromagnetic field vanishes. Since ezn and hzn are
defined everywhere over S, we can expand the fields given by

(vt&.t,Vt@,),VtZ.i,f.i,and X., ove~ S - SO and by zero
over So with respect to Vt eZP, (VthzP, (k x Vte,P)), e.P, and
h.P, respectively [8]

E {
VtEZ, over S – So

w Z4~EVteZP = ~
over So

(3a)

P

E {

Vt@~ over S – So
w UpfOVtezp = o

over So
(3b)

P

P P

-{

_ Vttiz, over S – So

o over So
(3C)

Let us denote the field given by the right-hand side of (3c)
with I-tt. Because the tangential component of tit has a step
discontinuity at Co, (Vt x fit) which includes the normal
derivative of the tangential component behaves as a Dirac

delta function there. This Dirac delta function is just the axial
component of the surface current at Co. The vector (Vt x lit)

then vanishes everywhere over S except at Co, and hence Zt

cannot be expanded in terms of the curl-free se! {Vt hzp } only.

It needs, in addition, the divergence-free set {k x Vt ezP}. On
the other hand, the functions defined by the right-hand side
of (3a) and (3b), respectively, can be expanded in terms of
the curl-free set {Vt e.p } because the tangential component of
these functions is continuous across Co.

Substituting the field representations according to (2a)-(2d)

into Maxwell’s equations and making use of the orthogonality

properties (Is)–(lc), we arrive at
m
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‘~ U: (4e)I:. —
k; Zo

~H
&; + jbI: = — U.

Zo
(4f,)

@:= #J: (4g)

@:= ~U: (4h)

where Z. is the intrinsic impedance of free space.

Quantities marked with a tilde (”) are normalized to
the free space wavenumber k.. The coupling integrals
X!~~, ‘l?,;?, lZ:~, 7Z~~,zj, ~~, and S.j read

/

Vt% ‘Vttizj~~R;; = (5a)
s–so .sT

/

VtE~~ . VtEzj ~~
~;; = (5b)

s–so q.

/

vtEzi.Vt!zj~~R;; = (5C)
s–so q.

/

Vt@i . Vt@J ~~@: = (5d)
s–so Ev

zj =
I

(v,&z,x V,?izj). i ~~
(5e)

s–so q-

/

t~iE.j ~~
Si.j = l’i~i$~ — . (5g)

s–so G

Substituting the series representations for
Vtltzi,Vt&zi,Vt@%, and tZi according to (3a)–(3d)
into (5a)–(5g), the integrals can be extended over S. This
is possible because the series are defined over this region;
and they vanish over So. In matrix notation, we get the

coupling matrices [~hh], [7?”], [77,’0],[7?00], [T], [To], and
[S] containing the elements 7?$, 7?~~, ‘)?$, 7?~~, Zj, <~, and

S~,, respectively, as a linear transformation of the matrices

[ih],[~e],[T], and[S]

[I&] = [[J-Hff]’,[@H]’]

[s] = [Z/P]t[s][w].

The elements of [Rh], [Re], [T’], and [S] are given by

/

VthZi . VthzJ ~S
R:l =

s–so CT

/

Vtez, - Vtezj ~SR:j =
s–so Cr

(6a)

(6b)

(6c)

(6d)

(7a)

(7b)

T,i = \
(Vtezi x Vthzj) . k ~S

(7C)
JS-SO &r . .

S,J = k:k;
1

* dS. (7d)
s–so G

The matrices [Rh], [Re], [T], and [S] characterize the coupling
of the eigenmodes corresponding to the empty shielded wave-
guide by the dielectric. Due to the metal insert, a linear trans-
formation of these matrices has to be carried out. The’ trans-
formation matrices [JHH], [fEH], [L@], [UEO], and [Z4L]
contain the elements ~P~H, ~P~H, iY~E, U$” and U;, respec-

tively, which are given by (3a)–(3d). Note that waveguides
which are based on the same substrate are described by
identical matrices [R~], [Re], [T], and [S].

If use is made of (4a)–(4h) all expansion coefficients except
for U,E, U:, and U,H can be eliminated. One arrives then at a
proper matrix eigenvalue problem

[

[1]- [P#q’[wq -[W]’[T]’

1()

-[kh]’[~o]t /yH

[0] [1] - [F#s][k’] [0] UE
[0] [1] u“

[ 1()
[7w] [qt [70]’ UH

= (B)2 [g [7?”] [770] UE . (8)
[P] [R’o]t [7P] @

The unit and the zero matrices are denoted by [1] and [0],
H, u*, and UO containrespectively. The column vectors U

the elements Us, U:, and U:, respectively. The eigenvalues
are the normalized propagation constants squared. Since in
(8) all matrix elements are real the eigenvalues are either
real or form complex-conjugate pairs. The matrix at the
right-hand side of (8) is symmetric and does not depend
on the free space wavenumber k.. Corresponding statements
are not valid for the matrix at the left-hand side. Note
that none of the submatrices has to be inverted or must be
multiplied with another nondiagonal submatrix. In view of the
numerical implementation of (8), this advantage results from
the expansion of erE instead of E.

The electromagnetic field of an eigenmode of the structure

shown in Fig. 1 is determined by the corresponding eigenvec-

tors (UH)t, (lY~)t, and (U”)t)t. E.g., the transverse electric
field can be represented in terms of the known TM- and TE-
eigenmodes corresponding to the empty shielded waveguide
by

The expansion coefficients

eigenvector of (8) by
Uf and u? are related to an

ICE==[z/pq7E + [L/quo + [,j-]df (9b)

.H = [jHH]@ (9C)

where UE and UH denote column vectors containing the
elements u: and u?, respectively. The other field components
can be deduced using some of the relations of (4a)–(4h).



2482 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44,NO. 12,DECEMBER 1996

B. Variational Approach
t

2

0

In this subsection another approach for the analysis of inho-

mogeneously filled shielded waveguides is presented, based on

a variational expression for /32 [11], [12]. The Rayleigh–Ritz

procedure is then applied in order to determine the correspond-

ing electromagnetic field.

The electric field in an inhomogeneously filled dielectric

waveguide satisfies the vector wave equation

‘Vx VxE– G.k;E=o. (lo)

.
0
.
.
aJ

Assuming an e‘~~’-dependence of the electric field, (10) can

be seperated into its transverse and axjal components. Using

the fact that the divergence of the flux density D vanishes, the

axial electric field can be eliminated

kxVtx Vtx Et–kx Vt;Vt. c~Et
A

—+i& X Et +@zk X Et = O. (11)

-2 1 1 1 1 1 I

o 20 40 50
ti—

Fig. 2. Convergence of eigenvalues for a shielded cn-cular dielectric wave-
guide; — (––): solution of (8) (19)); o ( x): step-index (gaussian)-profile.

Equation (11 ) is an eigenvalue equation! which can be written

in operator notation

.C.Et = ~2BEt (12a)

n
cc

with the linear differential operators

Le=kxvt xvtx–kxvt:vt. er–errk~ (12b)

B=–ix. (12C)
n

In [12] it has been shown that Z. and 1? are neither symmetric

nor self-adjoint, while the adjoint operators of L. and f? have

to fulfill the vector wave equation of the magnetic field. This

gives rise to a variational expression fcm ,62 Integrating over S – SO the inner products required in (14)
can be evaluated leading to

~z = _ (Ht, ~eEt)

(Ht, 13Et)-
(13) (iVt ~H,, V, x Et) = -(1~)’[kh]2V~ (17a)

where the (~, g) -notation denotes the inner product of the two

functions ~ and g. After some mathematical manipulations (&t X Ht, iVt . eEt
CT )

one arrives at

fi2 =
= (IE)t[k’]’(([l] - [W])VE

+ ([1]– [W”])vo– [V]VH)
(Ht, k X q.Et)

1

(Ht, i X Et) “
hrt,Vt X Et) (17b)

II \
—(~Vt X Ht , iiVt . dlt

q- )
+ k;(Ht, ~ X q.Et)). (14)

= (I~)t([7zqv~+ [T]’VE+ [Tr”]’v”)
+ (F) ’([T]VH+ [7Z-]VE+ [7P]VO)
+ (IO)* ([TO]vH + [7?e0]’vE + [Roo]vo) (17C)

Up to this point our analysis went parallel to that of [12].

Let us now expand the transverse electric field with respect
to the complete sets {Vt?lzn x k}, {VtSzn}, and {Vt@n }

(Ht, i X Et) = (I~)tV~ + (IE)tV~ + (IO)tVO. (17d)

The bar (–) denotes that (5a)–(5g) are to be computed with
l/G. being replaced by cr. The matrices [V], [W], and [W”],
respectively, contain the elementsn n n,=l

(15)

while for the expansion of the transverse magnetic field (2b)

can be used. Using some vector algebral yields !s-
Vt@j dS (18b)

(16a) Wij=–
/

In evVt&zi . Vtt,j dS
s–so

J+(@2s_50in G. Ezt&zj dS.

n

‘x3

Vt X Et = ~ V.H(r$j2H.nk (16b) (18c)
n
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‘Q’00 0

Fig. 3. Magnetic field lines of some TM-modes corresponding to a shielded strip line, two coupled strip tines, and a slot line.

Now the Rayleigh–Ritz procedure is applied. This results in a
matrix eigenvalue problem for /32

[

[T] + [ke]2[v] [me] + [Jkv]
[n”] - [k~]’

[7°] [~o]t
- [I])

‘T]1F7=(P)2F)‘1’)[P] +;;’]2[W’J]
[W”]

In comptison to (8) no coupling matrix appears at the right
hand side of (19).

Let us consider the case that the dielectric constant C.

changes abruptly. Then (16d) does not hold because the spatial
derivative of neither Et nor G. is regular while this is not the

case for the product ~rEt. It can easily be shown that the
eigenvectors of (8) and (19) are related by

(H

UH [n:] [~’ [To]t ;:
UE = [g [7P’] [w’]1() (20)
U“ [70] [m”]t [w] v“ “

Using this transformation, (17b) can be reformulated to

(&t x Ht, ikt d%
Er )=(IE)’[%e][s][ke].([TjvH+ [7-’]VE+ [7P]V”).

(21)

Applying the Rayleigh–Ritz procedure in (14) again yields a
modified matrix eigenvalue problem which can also be applied

for abruptly changing dielectrics

[

[nh’] - [iv]’ [7]’
([1] - [k~/[k’])[T] ([1] - [kq+jp[m’]

R 1($)=(’)2(3([1] - [Fi’;;][k’])[%”]
(22)

The expansion coefficients of the transverse magnetic field are

related to those of the transverse electric field by

ZOIH = jVH (23a)

Z“F =/?([1]– [k’][S][F])-lVE (23b)

Z“l”=jv”. (23c)

III. NUMERICAL RESULTS

The dispersion characteristics of dominant and higher order
modes of various planar structures have been investigated

by the eigenmode transformation technique. The convergence

of the eigenmode transformation technique could be further
improved by substituting the coupling matrices involving the
integrand 1/e. by the numerical inverse of its analytical
inverse, which is given by replacing 1/cr by G- as has been
described in detail in [13].

Fig. 2 shows the convergence of the two eigenvalue formu-
lations (8) and (9) for a shielded circular dielectric waveguide.
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Fig. 4. Electric field lines of some TE-modes corresponding to a shielded strip line, two coupled strip lines and a slot line.

The relative error of ~2 of the dominant TE-mode with

increasing number of expansion functions N is shown for

two dielectric profiles, namely, for a dielectic rod with radius

R/R, = 0.1, where R, is the radius of the shielding, and

for a gaussian dielectric profile with a standard deviation of

the same width. The maximum dielectric perrnittivity of the

core is e. = 10. Fig. 2 demonstrates that both approaches

work well for smooth dielectric profiles. For abruptly changing

dielectrics some field components are not continuous which
leads to worse convergence because much more spectral terms

need to be taken into account. Second, it is found that the

eigenvalue formulation (19) has a much better convergence

than (8). It is to be noted that for rotationally symmetric modes

TE- and TM-contributions are decoupled in (19) and (8).

Figs. 3 and 4 show the magnetic (electric) field lines of some

TM- (TE-)modes in a strip line, two coupled strip lines, and
a slot line as a linear combination of the housing eigenmodes.
This field representation provides the data necessary for the

eigenmode transformation. The field lines have to be parallel

(orthogonal) to the boundary and to the. metal insert. This is
in good agreement with the plots.

In Fig. 5 the cross sections of somle shielded transmis-
sion lines which have the same substrate and therefore the
same coupling matrices are plotted. The transformation matri-

ces [JHH], [jE~{], [UEE], [Z#o], and [@], however, have to

be determined for each structure, separately. The eigenmode
transformation of microstrip lines and coupled microstrip lines

are computed by the methods presented in [8] while for the

k
b

h2

h,

Fig. 5. Various shielded planar transmission lines with similar boundary
conditions.

computation of the transformation matrices corresponding to
finlines and coplanar lines the method suggested in [10] has
been applied. Fig. 6 shows the cross section of a shielded
dielectric image guide. For this structure no eigenmode trans-
formation is necessary.

Fig. 7 shows the dispersion characteristics of the dominant
modes of the planar transmission lines shown in Fig. 5 in

comparison with the results of Yamashita and Atsuki ([14]).

The agreement is good. Only for high dielectric permittivities

(~. = 20) there are small deviations. This can be explained
by the fact that the bandwidth of the coupling matrices (7a)
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Fig. 6. Cross section of a dielectric image guide.

2

J[tlf!j,l,l l,,,, i,,,,ll
..:
!;

o
,..1

0 5 10 15 20
f/GHz +

Fig. 7. Modal spectra of the dominant modes of the structures, shown in
Fig. S. Parameters: a = 20 mm, w = d = 2 mm, b = 10 mm, hl = 4.5
mm, h~=l mm.

Presented metho& —, ----, . . . . ––, –.–
Results of [14]: o, A, +, X, o 1

correspond to (a), (b), odd mode of (c), even mode of (c), (d), respectively,
in Fig. 5.; G- = 20,9.35,2.55.

is larger for higher dielectric contrast which degrades the

convergence of the infinite sums involved in the calculations.
Fig. 8 shows the modal spectrum of the shielded dielectric

image guide shown in Fig. 6 as compared to the resultsof[15],
[16]. In Figs. 8 and 9, positive values represent propagating
modes (~ is positive real) while negative values represent
evanescent modes (/3 is negative imaginary). Four real modes
and one pair of complex modes which splits into two real
modes at a normalized frequency of about koa = 4.7 are
plotted. One backward wave exists between /coa = 4.7 and
#coa = 5.0. The agreement with the results of the program
package MAFIA [16] is excellent, while the results of [15]
are slightly different. This is especially valid for the frequency
where the complex pair turns into two reaI eigenmodes.

The modal spectrum of a shielded microstrip line (two
real eigenmodes forming a pair of complex modes between
16-25 GHz) is presented in Fig. 9. Our results are compared
with those corresponding to the analysis presented in [6]. The
agreement is excellent.

IV. CONCLUSION

Two proper matrix eigenvalue formulations for the analysis
of shielded waveguides containing a dielectric and metal
inserts have been proposed. The metal inserts are taken into
account in form of linear transformations of the coupling ma-

t

I

2.5- ................-------..........---------

..........------------”-

l.5–

0.55

0.0

-o.5–

-1.0-

~ -“~
4.0 4,2 4,4 4.6 4.8 5.0 5.2 5,4 5.6 5.8

Fig. 8. Modal spectrum of a dielectric image guide. Paramete~
a = 15.8 mm, w = 6.9 mm, b = 7.9 mm, h = 3.3 mm, tr = 9
—: presented method, o(x) calculated real (complex) modes, --: results
of [15], –. –: results of [16].

t

“~
12 14 16 16 20 22 24 26 26

f lGHz

Fig. 9. Modal spectrum of a shielded microstrip line. Parametec
a=lOmm, w=lmm, b=5 mm, hz=lmm, hI=O, E,= 10.—:
presented method, o(+) calculated real (complex) modes, --: results of [6].

trices corresponding to the dielectric which makes the method
modular. For shielded dielectric waveguides, the numerical
implementation of both matrix eigenvalue formulations have
been checked and compared to other methods. Various types
of metal insert have been investigated and the validity of the

transformation technique has been checked for various classes
of planar transmission line.
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