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Application of the Eigenmode
Transtormation Technique for the
Analysis of Planar Transmission Lines

Christian Rieckmann, Andreas Jostingmeier, and A. S. Omar, Senior Member, IEEE

Abstract—The eigenmode transformation technique is formu-
lated for the analysis of inhomogeneously filled shielded waveg-
vides containing metal inserts. The permittivity of the filling
medium may be an arbitrary function of the transverse coor-
dinates. The method is based on expanding the electromagnetic
field in terms of the eigenmodes of the corresponding empty
shielding waveguide. The metal inserts have first the effect of
linearly transforming the eigenmodes of the empty guide into
those of the shielded waveguide containing the metal inserts
(including the TEM-modes). Next the inhomogeneity of the filling
medijum is taken into account which leads to a proper matrix
eigenvalue problem. In addition an alternative formulation is
derived from a variational approach. Results of both formulations
are compared for a shielded circular dielectric waveguide. The
eigenmode transformation technique is applied to various types
of planar transmission lines, i.e., coupled microstrip lines, finlines,
and coplanar lines. The results are compared with those of other
methods.

I. INTRODUCTION

E consider the inhomogeneously filled waveguide

shown in Fig. 1. The inhomogeneity is given by
a permittivity which may be an arbitrary function of the
transverse coordinates and the waveguide may contain one
or more metal inserts. Such a waveguide represents, e.g.,
shielded coupled microstrip lines, finlines or shielded dielectric
image guides. In the analysis of microwave components, e.g.,
waveguide discontinuities or junctions, a large number of
eigenmodes of the corresponding waveguides are needed to
achieve a sufficiently high accuracy. As has been shown in [1]
it is mandatory that no low order eigenmodes are overlooked.
This is a crucial aspect because in general the waveguides
considered support complex eigenmodes [2]-[4]. Due to the
geometrical similarity of different types of transmission lines
(e.g., there is no essential difference between the dielectric
substrate of a finline and that of a microstrip line), it would be
desirable to have a modular method at hand. This means that
once the eigenmode coupling corresponding to a dielectric
substrate has been calculated the results can be used for
various line types based on this substrate.
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Fig. 1. Cross section of an inhomogeneously filled shielded waveguide.
Although the method presented in [5] leads to a proper ma-
trix eigenvalue problem, to the authors’ best knowledge it has
not yet been applied to the actual computation of eigenmodes.
Conventional approaches result in a homogeneous system of
equations given by a characteristic matrix, the elements of
which are functions of the yet unknown propagation constant

_[6]. For a nontrivial solution the characteristic matrix becomes

singular. This is not a proper matrix eigenvalue problem.
Each eigenvalue has to be found as a complex zero of the
determinant corresponding to the characteristic matrix. On the
other hand, the solution of a proper eigenvalue problem yields
a large number of eigenvalues (corresponding to the size of
the characteristic matrix) at once.

As has been shown in [7], the set of TE- and TM-
eigenmodes corresponding to an empty waveguide is complete
if no a-priori coupling between the field components of these
eigenmodes is assumed. On the other hand for waveguides
with metal inserts additionally to the TE- and TM-eigenmodes
one or more TEM-eigenmodes (equal to the number of metal
inserts) have to be taken into account to form a complete
set. In this contribution we will follow the analysis of
[5] by expanding the field of the inhomogeneously filled
waveguide in terms of the eigenmodes of the corresponding
empty waveguide. In [8] it has been demonstrated that TM-
and TEM-eigenmodes of a waveguide with metal inserts
can be expressed in terms of the TM-eigenmodes of the
corresponding empty waveguide; whereas the TE-eigenmodes
are linecar combinations of TE- and TM-eigenmodes. The
influence of metal inserts can then be described by a linear
transformation of the matrices constituting the eigenvalue
problem corresponding to the shielding waveguide with
dielectric only. This results in a new proper matrix eigenvalue
problem. The computation of the transformation matrices can

. be treated as a separate problem [&]- [10] what leads to a

modular character of the method.
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II. THEORY

Referring to Fig. 1, the cross section (contour) of the
shielding waveguide and that of the metal insert are denoted
by S (C) and Sy (Ch), respectively. The unit vector normal to
C and Cj is represented by 7. The permittivity €, is a function
of the transverse coordinates r. The direction of propagation,
in which the structure is uniform, is taken along the z-axis
with a corresponding propagation constant 3.

Let {H., } and {&,,,} be the complete sets of axial magnetic
and axial electric fields characterizing the TE- and TM-
eigenmodes, respectively, corresponding to the waveguide
according to Fig. 1 without dielectric. Due to the existence of
N isolated metal inserts there exist NV linearly independent po-
tential functions ®,, which describe the corresponding TEM-
modes. H..,E.n, and P,, are real functions of the transverse
coordinates which correspond to cut-off wavenumbers ", k¢,
and 0, respectively. They satisfy the orthogonality relations

HonHom dS = Lé

nm (1a)
5—5So (5h)?
1
/5—50 (k5)?
V&, -V.®,, dS =6, (1)

S—Sp

where 6,., is the Kronecker deita and V, is the transverse
component of the del-operator. Note that H,,,&,,, and @,
are defined over § — Sy only.

A. Eigenmode Transformation Technique

Let k be the unit vector in axial direction. The sets
{ViH., x k} and ({V,€,,},{V:®,}) are complete with
respect to divergence-free and curl-free transverse electric
fields, respectively. The sets ({I;; X vtem},{ic x Vi@, 1)
and {V,H.,} have the same properties with respect to the
magnetic field. Let E;, H:, E,, and H, be the transverse
electric, transverse magnetic, axial electric, and axial magnetic
field components, respectively, then we can write

By =Y UH(ViH., x k)

e} N
+ > UIVEn + > ULV:2, (2a)
n n=1
Hy = IEV M+ > IE(k x Visy)
N ~
+ )" Lk x V,2,,) (2b)
n=1
B, =Y Urkié.n 20)
H.=) LinpHen (2d)
n

where the z-dependence e~7%% has been dropped out for all
field components.
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Let {h.,} and {e..} denote the complete sets of axial
magnetic and axial electric fields belonging to the TE- and
TM-eigenmodes, respectively, corresponding to the empty
shielding waveguide. For e, and h.,, orthogonality rela-
tions corresponding to (1a) and (1b) are valid with cutoff
wavenumbers k¢ and k", respectively. Inside a metal insert,
the electromagnetic field vanishes. Since e,, and h,, are
defined everywhere over S, we can expand the fields given by
(Vi€.0, Vi9,), Vi H i, €., and H,, over S — S and by zero
over Sy with respect to Ve, (Vih,p, (IAs: x Viesp)), €2p, and
hzp, tespectively [8]

o0

EE _ Vtgz@ over S — S()
Zupz Viewp = { o over Sy (32)
P
= EO | V®; over S-Sy
;Upz Viezp = { 0 over Sy (3b)
Z jp{,{Hvtth + Z jp€H(E X Vtezp)
P p
| ViH,, over §— S
o {0 over Sy (3¢)
S Lye _ | KSE,, over §— S5
zp:uplkpew B { 0 over Sy d)
i h
Lphp kyH,, over §— Sy
zp:jpz piEP 0 over Sg. (3¢)

Let us denote the field given by the right-hand side of (3¢)
with H;. Because the tangential component of H; has a step
discontinuity at Cp, (Vy x H;) which includes the normal
derivative of the tangential component behaves as a Dirac
delta function there. This Dirac delta function is just the axial
component of the surface current at Cy. The vector (V; X H)
then vanishes everywhere over S except at Cy, and hence H,
cannot be expanded in terms of the curl-free set {V;h.,} only.
It needs, in addition, the divergence-free set {I:: X Vies,}. On
the other hand, the functions defined by the right-hand side
of (3a) and (3b), respectively, can be expanded in terms of
the curl-free set {Vtezp} because the tangential component of
these functions is continuous across Cj.

Substituting the field representations according to (2a)—(2d)
into Maxwell’s equations and making use of the orthogonality
properties (la)—(1c), we arrive at

. S St + SR

N oo
+Y ROUY+ > TUY = %If (4a)
1—1 7

Y (@4b)

oo N oo
D TnUP + ) TOU+ Y RIMUH ==
1 =1 7

co N oo
SORQUE+ SRR+ S TN =20 (o
% i=1 B
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(4d)

[ N
i i=1

IP=_—_2 Ul (4o

IH
ﬂ

" ReZy
RRIV 4 GBI = ZUF @D
~ 1
E E
= —_— 4
B, Z Us (4g)
~ 1
0 0
= 4h
8L, 7 U, (4h)
where Z, is the intrinsic impedance of free space.

Quantities marked with a tilde (") are normalized to
the free space wavenumber ky. The coupling integrals
R R, R, RY, T;,;, T, and S,; read

g0 "veg o Ty 0 T3y Ty
R — / Vellei Vil g &)
Y S—So €r
RS = / Vibn Vitsj yg (5b)
S5-Sp €r
R = / Vibei Vi®5 o (50)
“ S Sg 67’
R0 — / M ds (5d)
Y 5~So €r ‘
Ty = / (Viei x Vitey) ko (5e)
N S-S0 Er
70 = / (Vi X ViHey) ko 50)
v 5-So €r
gzzgz
Sij :h‘,g’lﬂ;/ 273 48, (5g)
5-8 Er
Substituting the series representations for
ViH.;,Vi&,:, V@, and &.; according to (3a)—-(3d)

into (5a)-(5g), the integrals can be extended over S. This
is possible because the series are defined over this region;
and they vanish over Sp. In matrix notation, we get the
coupling matrices [R"], [Ree] [R€0], [R%9),[T],[T°], and
[S] containing the elements R/, RS, REY, RYY, T, T.J, and
Si;, respectively, as a linear transformation of the matrices

[R"], [R<], [T], and [S]

I
BT T
i E[Ted]
ee e0 EFE\t
ok T ] = (Bt |ty ez o
[7] (il e [ 175 H]
T3] =i [umvimn|[Fea) | 60
[S] = "] ST, (6d)
The elements of [R?],[R¢],[T], and [S] are given by
RZ :/ Vihzi - Vihsy ds (7a)
S—So €r
e _ Vtezz'vtezj
Rg; = /5 s (7b)
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zt hz' ‘ k
T, = / (Viess X Vihsj) ko (7¢)
S-S0 €r
S,y = kgks / 2 g, 7d)
5—8, €r

The matrices [R"], [R®], [T], and [S] characterize the coupling
of the eigenmodes corresponding to the empty shielded wave-
guide by the dielectric. Due to the metal insert, a linear trans-
formation of these matrices has to be carried out. The trans-
formation matrices [JHH] [TFH], [UEE], [UFC], and [UY]
contain the elements 777, 7EH UEE 10 and U, respec-
tively, which are given by (3a)—(3d). Note that waveguides
which are based on the same substrate are described by
identical matrices [R"], [R®],[T], and [S].

If use is made of (4a)—(4h) all expansion coefficients except
for UZ,U?, and U¥ can be eliminated. One arrives then at a
proper matrix eigenvalue problem

[I] - [RM2[RAR] —[RPP[T]E —[RP2[TOF] (U
[0] [I] — [#°][S][~<] 0] U”
[0] [0] (7] U’
I I I ol el Lo
=@ 7] [R] [RY|[U" ). (8)
[TO] [ReO]t [ROO] UO

The unit and the zero matrices are denoted by [I] and [0],
respectively. The column vectors U H U¥®, and U° contain
the elements U, UF, and U?, respectively. The eigenvalues
are the normalized propagation constants squared. Since in
(8) all matrix elements are real the eigenvalues are either
real or form complex-conjugate pairs. The matrix at the
right-hand side of (8) is symmetric and does not depend
on the free space wavenumber k. Corresponding statements
are not valid for the matrix at the left-hand side. Note
that none of the submatrices has to be inverted or must be
multiplied with another nondiagonal submatrix. In view of the
numerical implementation of (8), this advantage results from
the expansion of ¢,.F instead of E.

The electromagnetic field of an eigenmode of the structure
shown in Fig. 1 is determined by the corresponding eigenvec-
tors (UH)t, (UP)?, and (U°)!)*. E.g., the transverse electric
field can be represented in terms of the known TM- and TE-
eigenmodes corresponding to the empty shielded waveguide

by
e By = e98% (Z uFViesi + 3 ull (Vihai x E)). (92)

The expansion coefficients uf and uf! are related to an

eigenvector of (8) by

(9b)
(%)

[MEO]UO + [jEH]UH

where u” and u¥ denote column vectors containing the
elements u” and uf, respectively. The other field components
can be deduced using some of the relations of (4a)—(4h).
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B. Variational Approach

In this subsection another approach for the analysis of inho-
mogeneously filled shielded waveguides is presented, based on
a variational expression for G2 [11], [12]. The Rayleigh-Ritz
procedure is then applied in order to determine the correspond-
ing electromagnetic field.

The electric field in an inhomogeneously filled dielectric
waveguide satisfies the vector wave equation

V xVxE - ¢kiE =o. (10)

Assuming an e~/#*-dependence of the electric field, (10) can
be seperated into its transverse and axial components. Using
the fact that the divergence of the flux density D vanishes, the
axial electric field can be eliminated
. . 1
kXVt XVtXEt—kXVt—Vt-erEt
€r
— e k2k x E, + P’k x E; = o. (11)
Equation (11) is an eigenvalue equation which can be written
in operator notation

L.E, = ’BE,

with the linear differential operators

(122)

N . 1
ﬁe =k x Vt X Vt x —k x Vt—e——Vt CEp — GT]C(% (12b)
B=—kx. (12¢)

In [12] it has been shown that £, and B are neither symmetric
nor self-adjoint, while the adjoint operators of £, and B have
to fulfill the vector wave equation of the magnetic field. This
gives rise to a variational expression for (3
ﬂz __ <Hta ﬁeEtz
(Hy, BE,)
where the (f, g)-notation denotes the inner product of the two
functions f and g. After some mathematical manipulations
one arrives at

=t
(Ht,k X Et>

i ~
— <—Vt X Ht,kVt . 61Et>
Er

(13)

((BV: - Hy, Vi X Ey)

+ kE(Hy k% . Ey)). (14)

Up to this point our analysis went parallel to that of [12].
Let us now expand the transverse electric field with respect
to the complete sets {ViH.n X k}, {V:€,n}, and {V:2,}

oo oo N
E =) VAV Hon x k) + > VEVE+ > VIV,
n n n=1

15)

while for the expansion of the transverse magnetic field (2b)
can be used. Using some vector algebra yields

Ve Hy == IM(kh)H.n (16a)

Vex By =Y VE(RE) Honk (16b)
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Fig. 2. Convergence of eigenvalues for a shielded circular dielectric wave-
guide; —— (——): solution of (8) (19)); o { X ): step-index (gaussian)-profile.

Vix Hy ==Y IP(k5)%E.nk (16¢)

Vi By =—c Y VE(k5)Em
+Vier Y VE(ViHon x k)

o) N
+Vier > VEVEn + Vie, Y VIV, B,
n n=1

(16d)

Integrating over S — Sy the inner products required in (14)
can be evaluated leading to

(kV,-H,,V, x E;) = —(I")'[z"?VE  (17a)

<El-vt x H,, kV, - eE't>
= (IPY R - V)V
+ (U] -V - v
(Hy k % ¢, Ey)
= (IMYR"™MVE + [TI'VF + [T1V0)
+(IPP(TIVE + [REVE + [RO)V°)
+ (IO)t(['TO]VH + [ﬁe@]tVE + [ﬁOO]VO)

(17b)

(17¢)
(Hy k x Ey) = (TWH + IP)YVE + 10V, (17d)

The bar (7) denotes that (5a)—(5g) are to be computed with
1/€, being replaced by e,. The matrices [V], (W], and WY,
respectively, contain the elements

V” = —/ ln Er(vt(‘/’m X VtHz]) * kA: dS (183)
S_S[)

WO = — / In 6 V&, - Vi, dS (18b)
Wi] = —/ In V&, - Vtgz] ds
S5—8g
+ (nj)Z/ In &,.&,; dS. (18¢c)
S5—50
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Fig. 3.- Magnetic field lines of some TM-modes corresponding to a shielded strip line, two coupled strip lines, and a slot line.
Now the Rayleigh—Ritz procedure is applied. This results in a for abruptly changing dielectrics
matrix eigenvalue problem for 3% . - 12 —
R - 5T 7 A RV (1 - RS D R
I " —ee e — K}e He _ K)e K}e ee
T1+ [PV R+ RP(OV] - L) T R
el R i} oy - -
L [T ] vV _ 14 11 — [&el1SRe 'R‘e(] VE — ()2 VE'
[REO] _1__—[,%6]2[]/\)0] VE — (,8)2 VE (19) ([ ] [K’ []7%0]0[]& ])[ ] VO (ﬂ) VO
[RY Ve 14 ©2)

In comparison to (8) no coupling matrix appears at the right
hand side of (19).

Let us consider the case that the dielectric constant €,
changes abruptly. Then (16d) does not hold because the spatial
derivative of neither E; nor €, is regular while this is not the
case for the product ¢,.F;. It can easily be shown that the
eigenvectors of (8) and (19) are related by

UH [ﬁhh] ) [ﬂt [TO]t VH
vF )= [T [R¥] [RY] VE>. (20)
UO [ﬁgﬁ]t [7_2'00]

(7] Ve
Using this transformation, (17b) can be reformulated to

<—61—Vt x Hy, bV, - eEt>
= (IE)RS)Re) - ([TIVH + [RWVE + [RPVO).
(2D

Applying the Rayleigh-Ritz procedufe in (14) again yields a
modified matrix eigenvalue problem which can also be applied

The expansion coefficients of the transverse magnetic field are
related to those of the transverse electric field by

ZoI® = pvH (23a)
ZoI® = B([1 - [&°)[S][k]) " VF (23b)
ZoI? =pVO.. (23¢)

III. NUMERICAL RESULTS

The dispersion characteristics of dominant and higher order
modes of various planar structures have been investigated
by the eigenmode transformation technique. The convergence
of the eigenmode transformation technique could be further
improved by substituting the coupling matrices involving the
integrand 1/¢,. by the numerical inverse of its analytical
inverse, which is given by replacing 1/€, by ¢, as has been
described in detail in [13].

Fig. 2 shows the convergence of the two eigenvalue formu-
lations (8) and (9) for a shielded circular dielectric waveguide.
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Fig. 4. Electric field lines of some TE-modes corresponding to a shielded strip line, two coupled strip lines and a slot line.

The relative error of 32 of the dominant TE-mode with
increasing number of expansion functions N is shown for
two dielectric profiles, namely, for a dielectic rod with radius
R/R:; = 0.1, where R, is the radius of the shielding, and
for a gaussian dielectric profile with a standard deviation of
the same width. The maximum dielectric permittivity of the
core is ¢, = 10. Fig. 2 demonstrates that both approaches
work well for smooth dielectric profiles. For abruptly changing
dielectrics some field components are not continuous which
leads to worse convergence because much more spectral terms
need to be taken into account. Second, it is found that the
eigenvalue formulation (19) has a much better convergence
than (8). It is to be noted that for rotationally symmetric modes
TE- and TM-contributions are decoupled in (19) and (8).

Figs. 3 and 4 show the magnetic (electric) field lines of some
TM- (TE-)modes in a strip line, two coupled strip lines, and
a slot line as a linear combination of the housing eigenmodes.
This field representation provides the data necessary for the
eigenmode transformation. The field lines have to be parallel
(orthogonal) to the boundary and to the metal insert. This is
in good agreement with the plots.

In Fig. 5 the cross sections of some shielded transmis-
sion lines which have the same substrate and therefore the
same coupling matrices are plotted.The transformation matri-
ces [JTHH], [TEH], [UEF), [UF?], and [U/T], however, have to
be determined for each structure, seperately. The eigenmode
transformation of microstrip lines and coupled microstrip lines
are computed by the methods presented in [8] while for the

(@) ®)
W, b dw.d
Er h, & N\
h]
e— a » — a >
© (@)
w.dw b a
& h, &
h'I

Fig. 5. Various shielded planar transmission lines with similar boundary
conditions.

computation of the transformation matrices corresponding to
finlines and coplanar lines the method suggested in [10] has
been applied. Fig. 6 shows the cross section of a shielded
dielectric image guide. For this structure no eigenmode trans-
formation is necessary.

Fig. 7 shows the dispersion characteristics of the dominant
modes of the planar transmission lines shown in Fig. 5 in
comparison with the results of Yamashita and Atsuki ([14]).
The agreement is good. Only for high dielectric permittivities
(€r = 20) there are small deviations. This can be explained
by the fact that the bandwidth of the coupling matrices (7a)
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Fig. 7. Modal spectra of the dominant modes of the structures, shown in
Fig. 5. Parameters: ¢ = 20 mm, w = d = 2 mm, b = 10 mm, hy = 4.5
mm, ho = 1 mm.

Presented method: —, ---- .., y

Results of [14]: o, A, +, X, o
correspond to (a), (b), odd mode of (), even mode of (c), (d), respectively,
in Fig. 5.; ¢, = 20,9.35,2.55.

is larger for higher dielectric contrast which degrades the
convergence of the infinite sums involved in the calculations.

Fig. 8 shows the modal spectrum of the shielded dielectric
image guide shown in Fig. 6 as compared to the results of [15],
[16]. In Figs. 8 and 9, positive values represent propagating

modes (f is positive real) while negative values represent -

evanescent modes (3 is negative imaginary). Four real modes
and one pair of complex modes which splits into two real
modes at a normalized frequency of about kga = 4.7 are
plotted. One backward wave exists between kga = 4.7 and
koa = 5.0. The agreement with the results of the program
package MAFIA [16] is excellent, while the results of [15]
are slightly different. This is especially valid for the frequency
where the complex pair turns into two real eigenmodes.

The modal spectrum of a shielded microstrip line (two
real eigenmodes forming a pair of complex modes between
.16-25 GHz) is presented in Fig. 9. Our results are compared
with those corresponding to the analysis presented in [6]. The
agreement is excellent.

1V. CONCLUSION

Two proper matrix eigenvalue formulations for the analysis
of shielded waveguides containing a dielectric and metal
inserts have been proposed. The metal inserts are taken into
account in form of linear transformations of the coupling ma-
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k,a

Fig. 8. Modal specirum of a dielectric image guide. Parameter:

a = 158 mmw = 6.9 mmb = 7.9 mmh = 3.3 mme = 9
—: presented method, o(X) calculated real (complex) modes, --: results
of [15}, — . —: results of [16].

=3

&

(]

i a

- Im{BYk,

-4 T T T T T T T T
12 14 16 18 20 22 24 26 28

f/GHz

Fig. 9.. Modal spectfum of a shielded microstrip line. Parameter:
a =10 mmw = 1 mm,b = 5 mm, hy = 1 mm, h; = 0,¢, = 10. —:
presented method, o(+) calculated real (complex) modes, - -: results of [6].

trices corresponding to the dielectric which makes the method
modular. For shielded dielectric waveguides, the numerical
implementation of both matrix eigenvalue formulations have
been checked and compared to other methods. Various types
of metal insert have been investigated and the validity of the
transformation technique has been checked for various classes
of planar transmission line.
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